If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2-80=0
a = 19; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·19·(-80)
Δ = 6080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6080}=\sqrt{64*95}=\sqrt{64}*\sqrt{95}=8\sqrt{95}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{95}}{2*19}=\frac{0-8\sqrt{95}}{38} =-\frac{8\sqrt{95}}{38} =-\frac{4\sqrt{95}}{19} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{95}}{2*19}=\frac{0+8\sqrt{95}}{38} =\frac{8\sqrt{95}}{38} =\frac{4\sqrt{95}}{19} $
| 3n+2=2(n+3) | | (12x-3)=7 | | 9+4t=112-4t | | 2x2-3x-170=0 | | 4q^2-2q=-65 | | -3/7x+23=-13 | | -3/7x+43=-14 | | 4(x-3)=-7-9 | | -7(6/9-8/9y)=14 | | 3(7x+1)-24=17x+3 | | 23-19=2(x-7) | | 15x^2-6x+11=0 | | 3(4x-10)-7=11 | | w^2*18w+81=0 | | (3n-8)=-35 | | |3n-8|=-35 | | 1.27*10^36=x(x+.26) | | -8(y+4)=0 | | 51+6y-5=17y-10-3y | | (-4x)=24 | | 0.3333(12x-3)=7 | | X=5/4*25/x | | 5y-10.4=4 | | 3x-4(2x-3)=12 | | 5+19x=7+16x | | 3(5-3x)=2(-4x+6) | | -9(-5x+10)=-4(x+11)+3x | | 2c-3c-4c-222=2 | | 1/3(3x-1)=-3/7-3/7 | | 2(5x-97)=6 | | 2x+(x+4)=45 | | 4x+8x=3x-2x |